The Interplay of Structure and Optical Properties in Individual Semiconducting Nanostructures
نویسندگان
چکیده
Semiconductor nanostructures exhibit distinct properties by virtue of nano-scale dimensionality, allowing for investigations of fundamental physics and the improvement of optoelectronic devices. Nanoscale morphological variations can drastically affect overall nanostructure properties because the investigation of nanostructure assemblies convolves nanoscale fluctuations to produce an averaged result. The investigation of individual nanostructures is thus paramount to a comprehensive analysis of nanomaterials. This thesis focuses on the study of individual GaAs, AlGaAs, and ZnO nanostructures to understand the influence of morphology on properties at the nanoscale. First, the diameter-dependent exciton-phonon coupling strengths of individual GaAs and AlGaAs nanowires were investigated by resonant micro-Raman spectroscopy near their direct bandgaps. The one-dimensional nanowire architecture was found to affect exciton lifetimes through an increase in surface state population relative to volume, resulting in Fröhlich coupling strengths stronger than any previously observed. Next, ZnO nanowire growth kinetics and mechanisms were found to evolve by altering precursor concentrations. The cathodoluminescence of nanowires grown by reaction-limited kinetics were quenched at the nanowire tips, likely due to point defects associated with the high Zn supersaturation required for reaction-limited growth. Further, cathodoluminescence was quenched in the vicinity of Au nanoparticles, which were found on nanowire sidewalls due to the transition in growth mechanism, caused by excited electron transfer from the ZnO conduction band to the Au Fermi level. Finally, ZnO nanowalls were grown by significantly increasing precursor flux and diffusion lengths over that of the ZnO nanowire growth. Nanowall growth began with the Au-assisted nucleation of nanowires, whose growth kinetics was a combination of GibbsThomson-limited and diffusion-limited, followed by the domination of non-assisted film growth to form nanowalls. Nanoscale morphological variations, such as thickness variations and the presence of dislocations and Au nanoparticles, were directly correlated with nanoscale variations in optical properties.
منابع مشابه
Spinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer- Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties
In this paper, the mer-Co(NH3)3(NO2)3 complex was used as a new precursor for synthesizing spinel-type cobalt oxide nanoparticles (Co3O4NPs).Thermal decomposition of the complex at low temperature (175 °C) resulted in the Co3O4NPs without using expensive and toxic solvents or complicated equipment. XRD, FT-IR, SEM, EDX, and TEM were employed to characterize the product, and its optical and magn...
متن کاملComparison of Semiconducting Behavior and Optical Properties of Oxyfluoride Glasses of SiO2-Al2O3-BaF2 and SiO2-Al2O3-CaF2 Systems
Amorphous semiconductors are materials with a brilliant prospect for a wide range of optical applications like solar cells, optical sensors, optical devices, and memories. The purpose of the present research was to study the semiconducting optical properties of SiO2-Al2O3-CaF2 and SiO2-Al2O3-BaF2 oxyfluoride...
متن کاملAb-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds
Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...
متن کاملEffect of Sn Doping on Structural and Optical Properties of 2D α-MoO3 Nanostructures
Undoped and Tin (Sn) doped Molybdenum trioxide (α-MoO3) nanostructured thin films (which has lamellar (2D) structure) have been prepared using a simple and cost effective technique of spray pyrolysis on glass substrates at 450 ℃. Surface morphology, optical and structural properties of samples have been investigated using FESEM, UV-Vis spectroscopy and XRD analysis techniques, respectively. FES...
متن کاملImidazolium-based Ionic liquids on Morphology and Optical Properties of ZnO Nanostructures
ZnO nanostructures have been synthesized by a simple reflux method, using different ionic liquids, such as 1-benzyl-3-methylimidazolium bromide ([BzMIM][Br]), 1,1'-(1,4 phenylenebis (methylene)) bis (3-methyl-1H-imidazol-3-ium) bromide ([MM-1,4-DBzIM2][Br]2) and 1-phenacyl-3-methylimidazolium bromide ([PMIM][Br]), with different amount of sodium hydroxide in water. Als...
متن کاملGrowth and Optical Properties Investigation of Pure and Al-doped SnO2 Nanostructures by Sol-Gel Method
SnO2 nanoparticles with different percentage of Al (5%, 15%, and25%) were synthesized by sol-gel method. The structure and nature of nanoparticles are determined by of X-ray diffraction analysis. Also, morphology of the samples is evaluated by SEM. Moreover, the optical properties of the samples are investigated with UV-Visible and FT-IR. The XRD patterns are in...
متن کامل